Functional Fluidics Biomarkers assist Health Care Providers to improve outcomes by optimizing sickle cell patient monitoring and treatment.

Biomarkers As Clinical Monitoring Tool

There is an urgent need for validated biomarkers in sickle cell disease that facilitate open communication between the healthcare team and patients.

The clinical pain and fatigue characteristic of sickle cell disease is difficult to objectively quantify. Clinicians cannot depend on their physical exam, imaging studies, or laboratory data to validate claims of pain by their patients. This challenge often creates physician and patient dissatisfaction and makes it difficult to assess individual patient response to modifying therapy.

Functional Fluidics is a certified CLIA lab with biomarkers that may help objectively assess patient-reported outcomes (PROs) and response to disease modifying therapy.

 

 
02-4
 

 

Our Biomarkers for Red Blood Cell Health

Functional Fluidics proprietary biomarkers are unique diagnostic platforms that assess red blood cell health by replicating the environment that red blood cells experience in our bodies.

  • Flow Adhesion:
    Our Flow Adhesion Assays capture the adhesive properties of an individual’s blood cells during conditions that simulate physiologic blood flow.
  • Mechanical Fragility :
    Our Membrane Fragility assay determines the stability of the intact RBC membrane, which indicates the health of the RBC and may predict RBC survival.

Learn More

img03

 

 

Send Out Testing Services

Functional Fluidics biomarkers are available to Clinical Providers looking to improve the care of their sickle cell patients.

  1. Biomarkers:Our biomarkers objectively assess the impact of therapy on red blood cell health.
  2. Process:The send out process is simple and efficient with results available quickly.
  3. Expertise: Our experienced scientific and technical team can provide guidance as you consider how to best utilize our tests in a clinical environment
test01
 
 
 

Why Choose Functional Fluidics?

  • New Project

    Proprietary Lab Tests

  • New Project(1)

    CLIA Certified Lab

  • New Project(5)

    Complex Tests Experience

  • New Project(2)

    Leadership Access

  • New Project(3)

    Specialized Staff

  • New Project(4)

    Strong Industry Relationships



Functional Fluidics Assays

Our suite of proprietary cell function assays can help validate assumptions or support clinical claims.

  • 10
    Flow Adhesion of whole blood on VCAM-1 (FA-WB-VCAM)
    LEARN MORE
  • 11
    Flow Adhesion of whole blood on P-Selectin (FA-WB-Psel)
    LEARN MORE
  • 12
    Mechanical Fragility – Normoxia (MF)
    LEARN MORE
 

Evaluation of Longitudinal Pain Study in Sickle Cell Disease (ELIPSIS)

13
 
    

Sickle cell disease (SCD) is characterized by frequent and unpredictable vaso-occlusive episodes (VOEs) that produce severe pain, organ damage, and early death. Lack of reliable biomarkers to objectively define VOEs, hinders the development of clinically useful interventions to improve the care for these patients.

Functional Fluidics recently participated in a ground-breaking study involving sickle cell patients. This non-interventional, longitudinal, 6-month study aimed to develop tools to identify VOCs in SCD patients with or without health care utilization.

The study data suggest that Functional Fluidics FA-WB-VCAM assay may serve as a predictive biomarker for impending VEEs, and a monitoring biomarker to assess response to SCD-modifying therapies.

LEARN MORE
04-1    

Evaluation of Longitudinal Pain Study in Sickle Cell Disease (ELIPSIS) by Electronic Patient-Reported Outcomes, Actigraphy, and Biomarkers

Functional Fluidics Biomarker Assay Featured in ELIPSIS article in American Society of Hematology (ASH) Blood Magazine

Key Points

  • Feasibility of monitored out-of-hospital pain and patient-reported VOC days as endpoints for clinical trials in SCD is demonstrated.
  • ePROs, actigraphy, and laboratory biomarkers enable improved identification and assessment of in-hospital and out-of-hospital VOCs.
LEARN MORE
blood
 

Publications

FLOW ADHESION

Evaluation of Longitudinal Pain Study in Sickle Cell Disease (ELIPSIS) by Electronic Patient-Reported Outcomes, Actigraphy, and Biomarkers

This non interventional, longitudinal, 6-month study aimed to develop tools to identify VOCs in SCD patients with or without health care utilization.

MECHANICAL FRAGILITY

Red Blood Cell Mechanical Fragility as Potential Metric for Assessing Blood Damage Caused by Implantable Durable Ventricular Assist Devices: Comparison of Two Types of Centrifugal Flow Left Ventricular Assist Devices.

Implantable Ventricular Assist Devices (VADs) have become a treatment of choice for patients with end-stage heart failure or cardiogenic shock, significantly increasing both survival rates and the quality of life of patients.

MECHANICAL FRAGILITY

Individual Variability in Response to a Single Sickling Event for Normal, Sickle Cell, and Sickle Trait Erythrocytes

Hemoglobin S (Hb-S) polymerization is the primary event in sickle cell disease causing irreversible damage to red blood cell (RBC) membranes over repeated polymerization cycles.

FLOW ADHESION

Sevuparin blocks sickle blood cell adhesion and sickleleucocyte rolling on immobilized L-selectin in a dose dependent manner

Adhesion of sickle red blood cells (SSRBC) to the vascular endothelium may initiate and propagate vascular obstruction in sickle cell disease (SCD)

MECHANICAL FRAGILITY

Impact of Environment on Red Blood Cell ability to Withstand Mechanical Stress.

Susceptibility of red blood cells (RBC) to hemolysis under mechanical stress is represented by RBC mechanical fragility (MF), with different types or intensities of stress potentially emphasizing different perturbations of RBC membranes

MECHANICAL FRAGILITY

An Approach to Measuring RBC Haemolysis and Profiling RBC Mechanical Fragility

Red blood cells (RBC) can be damaged by medical products, from storage or from disease. Haemolysis (cell rupture and haemoglobin release) is often a key indicator, with mechanical fragility (MF) offering the potential to assess sub-haemolytic damage as well

FLOW ADHESION

Low Molecular Weight Heparin Inhibits Sickle Erythrocyte Adhesion to VCAM-1 through VLA-4 Blockade in a Standardized Microfluidic Flow Adhesion Assay

The vaso-occlusive events in sickle cell disease (SCD) begin in early childhood, warranting the need for more preventative and therapeutic interventions for those affected

MECHANICAL FRAGILITY

Impact of the Oscillating Bead Size and Shape on Induced Mechanical Stress on Red Blood Cells and Associated Hemolysis in Bead Milling

While in circulation, red blood cells (RBC) need to elastically undergo large deformations without lysing, an ability that may be compromised by cell membrane damage.

Clinical Send Out Test Information