

JSCDH-D-22-1239166

INTRODUCTION

Sickle Cell Disease (SCD) pathology is caused by polymerization of deoxygenated hemoglobin S (HbS) within RBCs. Resultant RBC "sickling" promotes vaso-occlusion and leads to an array of clinical complications including vasoocclusive episodes (VOEs), acute chest syndrome, stroke, and others. The amount of sickling depends on the size of polymerized fraction and polymerization kinetics, which can be significantly affected by treatments, e.g., by hemoglobinmodifying drugs. There is a need for rapid assays to monitor therapeutic response. Objective: Develop a hypoxia-induced RBC sickling assay as a potentially CLIA-waived test for use in drug development research and clinical monitoring of SCD therapies affecting Hb oxygen affinity (e.g., Hb modifiers, HbF inducers, PK activators, etc.).

Challenges

SCD therapies affecting Hb oxygen affinity must ensure adequate oxygen delivery while reducing RBC sicklingassociated complications. Conditions that favor oxygen delivery, such as high Hb concentration or lower Hb-O₂ affinity for faster and more efficient oxygen off-loading, would also favor RBC sickling. Conversely, therapies that reduce sickling through left-shifting of O₂ binding curve by Hb modification or through changes in 2,3-DPG concentration may decrease O_2 delivery for patients that already suffer from impaired blood flow and O_2 delivery.

✤ Need

There is a pressing need for tests that assess baseline RBC polymerization risk and monitor response to SCD therapies affecting Hb-O₂ affinity. Current approaches predominantly use gas exchange to deoxygenate blood samples, which takes makes it difficult to achieve precise control over the rate and depth of desired hypoxic conditions.

Solution

Enzymatic systems have advantages offering easier control over the oxygen consumption rates and the level of resultant deoxygenation (hypoxia) in the medium. Presented approach uses Protocatechuate Dioxygenase/Protocatechuate Acid (PCA/PCD) oxygen scrubber system, with the PCD nonheme iron center catalyzing the conversion of PCA and molecular oxygen in 1:1 stoichiometry into ß-carboxy-cis, cis-muconic acid. Additional attraction of the PCA/PCD system is that, unlike other enzymatic oxygen scrubbers, the reaction does not generate any reactive oxygen species (like peroxide or superoxide).

Dynamic Sickling Assay (DSA)

- ✤ Hypoxia is induced in microfluidic channels
- RBC sickling is assessed through time-lapsed imaging analysis.
- \bullet Medium PaO₂ is simultaneously measured by O_2 probe. Hypoxia is induced by the addition of PCD to blood sample containing PCA at T=0
- ✤ Hypoxia is induced up to 0% final O₂
- Pre-hypoxia sickled RBCs quantified at T=0
- Presented sample contained two fractions of sickling RBC, with SF_{T} representing the total fraction of **RBC** that sickle
- Each fractions is described by Sickling Fraction size (SF), sickling Rate (R), delay in sickling (D) and Morphological Point of Sickling (MPoS) – PaO_2 corresponding to 5% sickling of the fraction

Conflict of Interest Statement: Tarasev, Gao, Mota, Ferranti, Edenstrom, Zaidi, and Hines are employees and Tarasev, Gao and Hines are also shareholders of Functional Fluidics., a company developing methods for assessing functional properties of blood cells. This work was fully funded by Functional Fluidics.

NOVEL HYPOXIA-INDUCED SICKLING ASSAY FOR ASSESSMENT AND MONITORING OF SICKLE CELL DISEASE TREATMENTS AFFECTING HEMOGLOBIN POLYMERIZATION

¹Tarasev M, ¹Gao X, ¹Mota S, ¹Ferranti M, ¹Edenstrom A, ¹Zaidi A, ^{1,2}Hines PC ¹Functional Fluidics Inc., Detroit, USA, ²Wayne State School of Medicine, Wayne Pediatrics

DSA: FEATURES

Wide range of deoxygenation rates

- Modify deoxygenation rates in a range from seconds to hours
- Assay can be performed in both a quasi-equilibrium mode (common) and in a kinetic mode
- Kinetic assay can model Hb polymerization and RBC sickling as it would occur *in-vivo*, in capillary network

DSA: ILLUSTRATIVE APPLICATION

Decreased sickling due to *in-vitro* treatment with Hb-modifying drug (voxelotor)

- Untreated HbSS sample
 - ♦ Delay \approx 80 s (time to get PaO₂ to a level inducing RBC sickling)
 - Single phase sickling curve (only one sickling rate)
 - About 98% RBC are sickled at zero percent oxygen
- ✤ HbSS sample *in-vitro* treated with GBT440:
 - Two subpopulation with different propensity to sickle
 - 10% of RBC showed sickling similar to that of untreated cells,
 - ✤ 90% exhibited significant increased delay in sickling (about 260 s)
 - Sickling occurring at a much-reduced rate
 - Cumulative fraction of sickled RBC did not change significantly (> 97%).

Data collection and analysis using 3D surfaces and contour maps

- * Effect: incubation with Hb-modifying drug (voxelotor)
- Fractions of sickled RBC was determined over time at different rates of medium O_2 consumption
- ✤ 3D surface calculated through interpolation and presented as a counter map

- Conditions for induced hypoxia/medium deoxygenation can be optimized based on particular application's needs to select best conditions for detection of:
 - Differences in RBC sickling due to *in-vitro* drug treatment (pre-clinical drug development)
 - Changes in patient blood samples before and during *in-vivo* treatment (drug development clinical and treatment monitoring)
 - Changes in RBC sickling propensity between patient baseline and severe pathology conditions including SCD-related vaso-occlusive complications (e.g. pain crisis)
 - Changes in RBC properties as a result of gene editing (both done in-vitro and as a result of gene-editing) patient treatment)

